The Minimal Polynomial of Some Matrices Via Quaternions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Some results on the polynomial numerical hulls of matrices

In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.

متن کامل

Involution Matrices of Real Quaternions

An involution or anti-involution is a self-inverse linear mapping. In this paper, we will present two real quaternion matrices, one corresponding to a real quaternion involution and one corresponding to a real quaternion anti-involution. Moreover, properties and geometrical meanings of these matrices will be given as reflections in R^3.

متن کامل

Some Results on Polynomial Numerical Hulls of Perturbed Matrices

In this paper, the behavior of the pseudopolynomial numerical hull of a square complex matrix with respect to structured perturbations and its radius is investigated.

متن کامل

Some Inequalities for Sums of Nonnegative Definite Matrices in Quaternions

The collection of all quaternions is denoted byH and is called the real quaternionic algebra. This algebra was first introduced by Hamilton in 1843 (see [5, 6]), and is often called the Hamilton quaternionic algebra. It is well known thatH is an associative division algebra over R. For any a= a0 + a1i+ a2 j + a3k ∈H, the conjugate of a = a0 + a1i + a2 j + a3k is defined to be a = a0 − a1i− a2 j...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Clifford Algebras

سال: 2011

ISSN: 0188-7009,1661-4909

DOI: 10.1007/s00006-011-0294-4